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Brains make sophisticated decisions given noisy and complex
perceptual information.

To do so they leverage:
e an advanced integration of information across brain areas,

e and exquisite adaptation.
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In past work, we've built large-integrated systems to reproduce
several aspects of human cognition [Eliasmith et al, 2012].

Semantic Pointer Architecture Unified Network (SPAUN), is the
current state-of-the-art in large-scale functional brain models.

e 8 tasks, 2.5M neurons, no changes to the model across any
tasks.
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SPAUN - list memorization

A3p015873)7

Show SPAUN movie.
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SPAUN - rule inference

Show SPAUN movie.
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e Processing natural stimuli

e human accuracy: 98%
e model accuracy: 94%
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e human accuracy: 89% 3|4
e model accuracy: 88%
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e Simple RL to update
behaviour based on reward

" Time (5)
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Extending SPAUN

¢ Implementing more sophisticated cortical circuits

e Nonlinear adaptation

e Extending subcortical adaptive decision making

e Hierarchical reinforcement learning
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Action and perception
The dual of the control problem is the prediction problem.
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A canonical microcircuit

Haeusler and Maass (2007)
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Adaptive nonlinear circuits

Slotine has developed an extremely effective high-speed nonlinear
adaptive algorithm [Cheah et al, 2006, Sanner and Slotine, 1992].

Two types of adaptation occur in these circuits:

Adaptive transformation

(input) (output)

(state, error)
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Adaptive nonlinear circuits

adaptive nonlinear
prediction
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A canonical microcircuit

The nonlinear adaptation circuit maps on to the microcircuit seen
throughout the cortex.

Haeusler and Maass (2007)

Canonical microcircuit for nonlinear adaptive control
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Adaptive action

A quadcopter being controlled by an adaptive nonlinear controller
implemented in spiking neurons.

It learns online to account for the effects of gravity and wind.

Show video.
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Adaptive perception
Here, the circuit learns to predict the path of a bouncing ball.

Show video.

12} time = 56.6

T T
Non-adaptive predictor []
theta = -48.7

Adaptive predictor

10 ¢ 4 ! : RARAERR

IS
—

20 40 60 80 100

o

University of

Waterloo

tdewolf@uwaterloo.ca - Methods for scaling neural computation — 14



UNIVERSITY OF WATERLOO CENTRE FOR THEORETICAL NEUROSCIEN

All examples done with the same circuit

Canonical microcircuit for nonlinear adaptive control
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Two kinds of adaptation

e Cortical adaptation

e e.g. sensory/motor
processing

o Subcortical adaptation

e decision making given
context/environment
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Reinforcement learning

state / context |

reward
action

environment

University of

Waterloo

tdewolf@uwaterloo.ca - Methods for scaling neural computation — 17



UNIVERSITY OF WATERLOO CENTRE FOR THEORETICAL NEUROSCIENCE

Cortico-basal ganglio-thalamic loop
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Hierarchical reinforcement learning

First neural implementation of hierarchical reinforcement learning.
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We believe that the strengths of each adaptation system will be
most compellingly realized in an integrated model that takes
advantage of learning and structure at both cortical and
subcortical levels.
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Tasks models are well-suited for

Strengths and weaknesses parallel those of mammalian brains.

Strengths:
e pattern identification

e nonlinear adaptive
perception and action

e parallel processing

Weaknesses:
e precise numerical calculation

e rapid serial information

processing
Waterloo
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